Math 31 - Homework 6

Due Friday, August 10

Easy

1. Classify all abelian groups of order 600 up to isomorphism.
2. Prove that if G_{1} and G_{2} are abelian groups, then $G_{1} \times G_{2}$ is abelian.
3. [Herstein, Section $2.9 \# 1$] If G_{1} and G_{2} are groups, prove that $G_{1} \times G_{2} \cong G_{2} \times G_{1}$.
4. [Herstein, Section $4.2 \# 2$] Let R be an integral domain. If $a, b, c \in R$ with $a \neq 0$ and $a b=a c$, show that $b=c$.
5. [Herstein, Section 4.1 \#13] Find the following products of quaternions.
(a) $(i+j)(i-j)$.
(b) $(1-i+2 j-2 k)(1+2 i-4 j+6 k)$.
(c) $(2 i-3 j+4 k)^{2}$.
(d) $i\left(\alpha_{0}+\alpha_{1} i+\alpha_{2} j+\alpha_{3} k\right)-\left(\alpha_{0}+\alpha_{1} i+\alpha_{2} j+\alpha_{3} k\right) i$.

Medium

6. Let G_{1} and G_{2} be finite groups.
(a) If $a_{1} \in G_{1}$ and $a_{2} \in G_{2}$, prove that

$$
\left|\left(a_{1}, a_{2}\right)\right|=\operatorname{lcm}\left(\left|a_{1}\right|,\left|a_{2}\right|\right),
$$

where $\operatorname{lcm}(m, n)$ denotes the least common multiple of the integers m and n.
(b) [Herstein, Section $2.9 \# 2]$ Prove that if G_{1} is a cyclic group of order n and G_{2} is a cyclic group of order m, then $G_{1} \times G_{2}$ is a cyclic group if and only if $\operatorname{gcd}(m, n)=1$. [Hint: $m n=\operatorname{lcm}(m n) \cdot \operatorname{gcd}(m, n)$.$] (Note that this implies the theorem that was mentioned in class:$ if m and n are relatively prime, then $\mathbb{Z}_{m} \times \mathbb{Z}_{n} \cong \mathbb{Z}_{m n}$.)
7. [Herstein, Section $4.1 \# 4]$ Recall that if $a \in \mathbb{Q}$, we can always write a in lowest terms (or reduced form) as $a=m / n$, where $\operatorname{gcd}(m, n)=1$. Define

$$
R=\left\{\frac{m}{n} \in \mathbb{Q}: \operatorname{gcd}(m, n)=1 \text { and } n \text { is odd }\right\} .
$$

That is, R is the set of all rationals which, when written in lowest terms, have an odd denominator. Show that R is a ring under the usual addition and multiplication of rational numbers. Determine which elements of R are units. (This ring R is actually quite important in higher algebra. It is usually denoted by $\mathbb{Z}_{(2)}$, and called the localization of \mathbb{Z} at 2 .)
8. [Herstein, Section 4.1 \#21] Show that any field is an integral domain.
9. [Herstein, Section $4.2 \# 3]$ Let R be a finite integral domain with identity $1 \in R$. Show that R is actually a field.

Hard

10. Let D_{n} denote the dihedral group of order $2 n$, let $r \in D_{n}$ denote the counterclockwise rotation by $2 \pi / n$ radians, and let m denote any reflection of the regular n-gon. Recall that the rotation subgroup

$$
H=\left\{e, r, r^{2}, \ldots, r^{n-1}\right\}
$$

is a normal subgroup of D_{n}. Let $K=\{e, m\}$; we saw in class that K is a subgroup, but it is not normal. You will need two facts regarding D_{n} (which you do not need to prove):

1. Every element of D_{n} can be written as $r^{i} m^{j}$, with $0 \leq i \leq n-1$ and $j=0$ or 1 . Thus $D_{n}=H K$.
2. You proved earlier (in a special case) that $m r=r^{-1} m$.

Define a group G as follows: the elements of G are pairs $\left(r^{i}, m^{j}\right)$ (so that $G=H \times K$ as sets), but the binary operation on G is "twisted" in some sense. More specifically, we define

$$
\begin{aligned}
\left(r^{i}, e\right)\left(r^{j}, e\right) & =\left(r^{i+j}, e\right) \\
\left(r^{i}, m\right)\left(r^{j}, e\right) & =\left(r^{i-j}, m\right) \\
\left(r^{i}, e\right)\left(r^{j}, m\right) & =\left(r^{i+j}, m\right) \\
\left(r^{i}, m\right)\left(r^{j}, m\right) & =\left(r^{i-j}, e\right)
\end{aligned}
$$

for all i, j between 1 and $n-1$. Now define $\varphi: G \rightarrow D_{n}$ by

$$
\varphi\left(r^{i}, m^{j}\right)=r^{i} m^{j} .
$$

Prove that φ is an isomorphism of G onto D_{n}. (This shows that D_{n} is not quite a direct product of the subgroups H and K, since K isn't normal. However, things can be made to work if we modify the multiplication on $H \times K$ slightly.)

